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Abstract— Our purpose is to optimize penalized block-
iterative algorithms for detection of Ga-67 tumors in the
thorax. We illustrate some of our methods involving psy-
chophysical studies with results from a preliminary channel-
ized Hotelling observer (CHO) optimization for a one-step-
late (OSL) version of the penalized RBI-EM algorithm that
features a 3D uniform quadratic penalty function. The al-
gorithm parameters to be optimized are iteration number
and a penalty weighting parameter β. Use of the CHO is an
efficient means of bounding regions of parameter space that
contain the optimal parameters, although the final determi-
nation of the optimal parameters will be left to human psy-
chophysical studies. From the CHO optimization, we found
that one iteration of the penalized RBI-EM algorithm could
outperform a previously optimized reconstruction strategy
with RBI-EM and post-filtering that required three itera-
tions.

I. INTRODUCTION

By most definitions of image quality, unregularized re-
constructions of SPECT data are substandard. Procedures
for improving the quality of iterative reconstructions usu-
ally involve penalty functions, stopping rules, and post-
reconstruction filters. Whether a particular regularization
scheme actually improves an image will depend on one’s im-
age quality measure. In a series of earlier papers [1-3], we
documented optimizations of the ordered-sets expectation-
maximization (OSEM) [4] and rescaled block-iterative EM
(RBI-EM) [5] algorithms that were aimed at determining
if detection of Ga-67 tumors in the thorax could be im-
proved by modeling the physics of the data acquisition
in the inverse problem. These algorithms used a post-
reconstruction Gaussian filter as a regularizer. This cur-
rent abstract describes the early stages of similar optimiza-
tions of algorithms derived by incorporating 3D penalty-
function regularizers into the RBI-EM algorithm and the
block-iterative interior point algorithm (IPA) [6]. Such
penalized-likelihood methods are often viewed in the con-
text of maximum a posteriori (MAP) reconstruction [7].

One motivation for investigating these penalized algo-
rithms comes from the results of our work with the OSEM
and RBI-EM algorithms. Based on detection-performance
metrics drawn from localization ROC (LROC) [8] stud-
ies with human observers, it was determined [2] that the
OSEM algorithm with nonuniform attenuation correction
(AC) and three-dimensional (3D) detector-response correc-
tion (DRC) did improve detection in comparison to the
OSEM algorithm with only AC or with neither correction.
Even so, it was also seen that a significant difference in
performance existed between our DRC reconstructions and
“ideal” reconstructions that represented an upper bound
on DRC. The Gaussian post-filter may have contributed to
this difference by partially negating the effect of the DRC
in our reconstructions. If this were true, we might expect to

find that regularization with edge-preserving penalty func-
tions [7, 9] boosts observer performance over that obtained
with the post-filter regularization.

To show that one algorithm offers improvement over an-
other in a fair comparison first requires optimization of
each algorithm with respect to its adjustable parameters.
We perform these preliminary optimizations using a combi-
nation of channelized Hotelling observer (CHO) [10] ROC
and human-observer LROC studies. Use of the CHO of-
fers an efficient means of coarsely bounding regions of pa-
rameter space that contain the optimal parameters. The
actual determination of those optimal parameters is then
left to the LROC studies, but the workload for the human
observers is reduced by having applied the CHO. In this
abstract, we illustrate this approach with results from a
preliminary CHO optimization for a one-step-late (OSL)
version of the penalized RBI-EM algorithm that features
a 3D uniform quadratic penalty function. The adjustable
parameters to be optimized in this case are iteration num-
ber and a penalty weighting parameter β. This penalty
function does not have edge-preserving characteristics, but
allows comparison to our past studies with the Gaussian
post-filter. Edge-preserving penalty functions are also to
be investigated for use with the penalized RBI-EM and
IPA algorithms. The inclusion of the penalized IPA al-
gorithm in this research provides a reconstruction method
that is not based on the OSL approximation.

II. METHODS

A. The Phantom

A distribution of Ga-67 citrate in the chest was simulated
with one geometry of the 3D mathematical cardiac-torso
(MCAT) phantom [11]. Background activity levels in the
phantom were set by reference to clinical values. Tumors
were modeled as 1-cm diameter spheres with a tumor-to-
soft-tissue activity ratio of 20:1. Each “abnormal” case
contained one tumor, randomly placed within a 3D map of
likely tumor areas.

B. The Projection Data

Separate analytic projections of the phantom and tumors
were created and then combined into a noise-free tumor-
present projection sets. The projector modeled nonuniform
attenuation in the phantom and the response for a medium-
energy parallel-hole collimator. For the results presented
herein, perfect scatter rejection was assumed so that com-
parisons with our previous optimizations of OSEM and
RBI-EM could be made, but simulations that include scat-
ter are also being done. Separate projections for 93- and
185-keV photons were obtained using energy-specific atten-



uation maps, and then added as a weighted sum based on
the relative abundances and camera efficiencies for these
energies. Projection sets consisted of 128 256 × 256 pro-
jections (pixel width of 0.1585 cm), rebinned to 128 × 128
pixels (pixel width of 0.317 cm). Poisson noise was added
to form data sets of 8 million counts.

C. The Reconstruction Algorithm

For this abstract, we consider a OSL penalized version
of the RBI-EM algorithm [5]. Like the OSEM algorithm,
the RBI-EM algorithm is a block-iterative version of the
maximum-likelihood expectation maximization (MLEM)
algorithm, but unlike the OSEM algorithm, it converges
in the case of consistent data for any choice of subsets.
Our human-observer LROC studies have also shown that
the RBI-EM algorithm is more robust than the OSEM al-
gorithm as the number of projection data subsets is in-
creased in order to accelerate the reconstruction [3]. To

define the penalized RBI-EM algorithm, we let f̂ (j) be the
jth iteration (j = 0, ...,∞) of f , with individual elements

f̂
(j)
n , and consider the detector pixels divided into R dis-

joint subsets S1, . . . , SR. The convention followed here is
that every cycle through the R subsets represents an it-
eration. An RBI-EM algorithm regularized with penalty
function U(f̂ (j)) requires solving the equation
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For arbitrary U , a closed-form expression for f̂
(j+1)
n is un-

obtainable from Eq. (1). One way around this difficulty is

to replace U(f̂ (j+1)) with U(f̂ (j)), which is referred to as
the OSL approach [7].

Our uniform quadratic penalty function has the form
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where V is the full set of voxels in the 3D reconstruction,
Nk represents the 3 × 3 × 3 cube of voxels centered about
the kth voxel, and wik is the distance between the centers
of the kth and ith voxels in Nk, normalized by the voxel
width. The optimization parameters for this choice of U
are the number of iterations and the magnitude of β. Each
combination of iteration number and β shall be referred
to as a reconstruction strategy. For a point of compari-
son, our past studies [3] found optimal observer detection
performance with 3 iterations (32 subsets of 4 projection
angles each) of the RBI-EM algorithm combined with a 3D
Gaussian post-filter with a FWHM of 0.95 cm.

Reconstructions with matrix dimensions of 128 × 128 ×
128 were obtained with strategies using one iteration of
Eq. (1) and four projection angles per subset for values
of β between 0.0 and 1.5. Both the AC and the DRC
procedures that had been used in [2] were included in the
iteration. The attenuation map used for the AC was the
same one used in the creation of the projection sets, and in
that sense was an optimal attenuation correction [12]. No
post-reconstruction filter was applied. For LROC studies,
2D images through the center of the tumor are extracted
from the 3D reconstructions. These are then adaptively
thresholded, interpolated to 256×256 pixels, and then con-
verted from floating-point to byte images for display to the
human observers. For the CHO, the same 2D slices were
extracted, but the thresholding, interpolation, and conver-
sion to greyscales were not applied. Excluding these steps
reduced the computing time and also allowed use of a low-
noise approximation for constructing the CHO that is de-
scribed in Section II-D. For OSEM-reconstructed images,
we have found [13] that omitting these processes has little
impact on the correlation between the CHO and average
human observer.

D. Observer Studies

Our evaluation of reconstruction algorithms uses LROC
methodology to measure human-observer performance of
the Ga-67 tumor detection task. In a standard ROC study,
an observer’s response for an image is a confidence rating
that a tumor is either present or absent. For an LROC
study, the observer is asked to give this confidence rating
and the coordinates of the maximally suspicious tumor lo-
cation. By implementing this detection and localization
task, LROC offers both a better approximation of clini-
cal detection tasks and increased statistical accuracy over
ROC for measuring detection performance [8]. With this
improvement in accuracy comes increased statistical power
for discriminating between reconstruction strategies.

The CHO is a linear discriminant function that has been
shown [14-18] to correlate with humans for many “signal-
known-exactly” (SKE) detection tasks, in which the ob-
server knows the tumor location from the outset. We do not
yet have a modified version of the CHO that can perform
the search and detection task associated with these LROC
studies and still correlate with humans, but we have found
that the average CHO performance in series of SKE-ROC
studies with multiple tumor location agrees with average
human performance in the sense that both indicate similar
significant differences between reconstruction strategies [3,
13, 19].

For a given tumor location, the response of the CHO to
an image is a scalar λ that is a weighted sum of the image
voxels. This sum can be viewed as the inner product be-
tween the image and a template image wcho. Let f̂ be a
3D reconstruction from noisy data that, with equal likeli-
hood, comes from an ensemble H0 of tumor-absent recon-
structions or an ensemble H1 of tumor-present reconstruc-
tions. Post-reconstruction processing such as extraction
of the transaxial slice of interest is performed by opera-



tor S, so that S f̂ is a 2D image intended for the observer.
Then λ = w

†
choS f̂ , where the † indicates a vector transpose.

Comparison of λ to a threshold value determines whether
the CHO decides the image contains a tumor. The CHO’s
overall performance can be quantified by a signal-to-noise
ratio for λ [20],

SNR2 =
[〈λ|H1〉 − 〈λ|H0〉]

2

1
2var(λ|H1) + 1

2var(λ|H0)
, (4)

where 〈λ|Hi〉 and var(λ|Hi) (i = 0, 1) are the mean and
the variance of the distribution of λ for the ith ensemble.

The CHO template is composed of a matrix U of impulse
responses for a set of C 2D prefilters (the “channels”) cen-
tered on the tumor location, a channel covariance matrix

Kchan, and a matched filter. For ensemble Hi, let f̂ i be the
mean 3D reconstruction and let Ki be the voxel covariance
matrix. Assuming S applies only linear post-processing,
we make the definition

Kchan =
1

2
US[K0 + K1]S

†U†, (5)

and express the CHO template as [10]

wcho = U†K−1
chanUS(f̂1 − f̂0). (6)

Substituting Eq. (6) into Eq. (4) leads to the formula

SNRcho =
[

(f̂1 − f̂0)
†S†U†K−1

chanUS(f̂1 − f̂0)
]

1
2

(7)

for evaluating the CHO’s performance.
The channel covariance and matched-filter portions of

the CHO require knowledge of the ensemble statistics of
H0 and H1, and determining these statistics accounts for
the computational expense of using the CHO. Oftentimes,
sets of noisy reconstructions are generated to produce sam-
ple statistics. In doing so, one makes use of the fact that
the number of channels C (C=3 in our CHO model) is
much smaller than the number of image voxels by comput-
ing Kchan directly from the C × C “channelized” images
US f̂ instead of estimating Ki in full. For complex iterative
reconstruction algorithms, this approach is very computa-
tionally intensive [21]. An alternative is to make a low-noise
assumption about the images [22-24] and thus approximate
the ensemble statistics by a recursive procedure using noise-
free data. Let f̂ (k) ∈ Hi be the kth iteration with g, and let
a(k) be the kth iteration with the noise-free data g. Also,

define D(k) as the diagonal matrix with element D
(k)
jj =

a
(k)
j , the jth element of a(k). When f̂ (k) ≈ a(k) + ε

(k) for

small perturbations ε
(k), then f̂ i ≈ a(k) [22], and

Ki ≈ D(k) O(k) Kg [O(k)]† D(k). (8)

The matrix O(k) describes how noise in the data is trans-
ferred into the reconstruction through k iterations. We
determined the specific form of O(k) for the penalized RBI-
EM algorithm by merging the results in [24] for MAP-
type reconstuction algorithms with [22], which treats block-
iterative methods such as the RBI-EM algorithm. As with

the sample statistics approach described above, the chan-
nel covariance should be calculated directly by computing
the product A†A, where

A = K
1
2
g [O(k)]†D(k)S†U†. (9)

The SKE-ROC studies were conducted for 5 tumor lo-
cations. The overall CHO performance for a strategy was
figured by converting SNRcho for each location into an area
under the ROC curve AZ as described in [19] and then com-
puting the average area 〈AZ〉 over location. The computa-
tion time required to evaluate SNRcho for a given strategy
at a single location is on the order of the time required to
perform 2(C + 1) reconstructions with that strategy.

III. RESULTS AND CONCLUSIONS

The results of the ROC studies are presented in Figure 1,
in which 〈AZ〉 is plotted against β for the penalized RBI-
EM strategies that used a subset size of four angles per
subset. The high values of 〈AZ〉 seen for these ROC studies
are partly due to the fact that the tumor contrast and the
number of counts in the data sets were originally set for
use in the LROC studies.

The solid horizontal line at 〈AZ〉 ≈ 0.98 denotes the
CHO performance using three iterations of the RBI-EM
algorithm and a 3D Gaussian post-filter of FWHM = 0.95
cm. The best-performing (〈AZ〉 ≈ 0.99) of the strategies we
tested used β=1.25, but several other strategies also out-
performed the RBI-EM strategy. The effect on CHO per-
formance of using more iterations and different numbers of
subsets is currently being investigated. Also, whether the
precipitous fall-off in performance above β=1.25 will find
a correlation in human LROC studies remains to be seen.
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